
The size effect on the switching properties of ferroelectric films: a one-dimensional lattice

model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 4813

(http://iopscience.iop.org/0953-8984/8/26/013)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 4813–4822. Printed in the UK

The size effect on the switching properties of ferroelectric
films: a one-dimensional lattice model

C L Wang†‡ and S R PSmith‡
† Department of Physics, Shandong University, Jinan, 250100, People’s Republic of China
‡ Department of Physics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

Received 2 January 1996, in final form 26 April 1996

Abstract. A one-dimensional lattice model with non-ferroelectric boundary sites has been used
to study the effect of size on the polarization-reversal process in ferroelectric films. We assume
non-ferroelectric imperfections at the boundary sites which act as nuclei for the polarization
reversal, and include them explicitly in the free energy. The dependences of the switching time
on film thickness and on electric field strength have been obtained, and fitted with empirical
formulae. The time evolution of the polarization under a step field has also been simulated, from
which we can clearly see domain wall formation and motion. The polarization and current under
a bipolar pulse signal are also obtained to demonstrate the different memory state responses, in
which a back-switching phenomena can be observed clearly.

1. Introduction

There has been renewed interest in the polarization-reversal phenomena in ferroelectric
materials in association with the development of thin-film ferroelectric memories (Scott and
Paz Araujo 1989). It is well known that the polarization reversal in ferroelectrics does
not proceed homogeneously throughout a specimen, but inhomogeneously by a nucleation
growth mechanism. The reversal process has often been analysed using a method based
upon Kolmogorov–Avrami (KA) theory, which was originally a model of crystal growth
(Kolmogorov 1937, Avrami 1939, 1940, 1941). Relying on several key assumptions,
Ishibashi and co-workers have developed this theory to study how the switching property
is influenced by size and surface effects in ferroelectric films (Ishibashi and Orihara 1992,
Orihara and Ishibashi 1992, Ishibashi 1993). A detailed review of this work can be found in
Nagayaet al (1993). This extended KA theory—Ishibashi theory as it was called (Dennis
1993)—has been compared with an earlier model of polarization reversal (Fatuzzo 1962), but
no simple relationship between the two models has been found. It has recently been shown
that after some mathematical manipulation the essential kinetics parameters in KA theory,
which describe the domain structure evolution, can be obtained from the measurement of the
transient current (Shur and Rumyantsev 1994, Shuret al 1994). This has been validated by
computer simulation and measurements on model ferroelectric samples (Shuret al 1995).

On the other hand, simulation of the polarization-reversal process has also been
performed based upon the Landau-type free energy for a homogeneous system (Ishibashi,
1992). Imperfections like impurities and defects play an important role in the switching
process, but since it is difficult to include such imperfections within the continuum form
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of the free energy, a lattice model—free energy in a discrete form—has been proposed
(Ishibashi 1990a, b, Nagaya and Ishibashi 1991). The free energy was written as

F =
N∑

n−1

[
1

4
(1 − p2

n)
2 + κ

2
(pn − pn−1)

2 − pne

]
(1)

where all of the parameters and variables are dimensionless.pn is the dipole moment at
site n, e is the applied electric field andκ a positive constant representing the interaction
between nearest neighbours.N is the total number of lattice sites. In the expression (1), the
variablespn have been scaled so that only one parameterκ is retained, the other parameters
being scaled to be unity. A full unscaled expression in which all parameters are retained
can be found in the paper by Omuraet al (1991). The dynamics of the dipole moment at
the siten is described by the Khalatnikov equation (Blinc and Zěǩs 1974)

γ
dpn

dt
= − ∂F

∂pn

(2)

where γ is the viscosity coefficient. In this equation the effect of the kinetic energy is
ignored, since it only contributes to phenomena for a range of much higher frequencies. By
applying equation (2) to equation (1), one derives a set of differential equations which can
be solved numerically.

In previous work (Ishibashi 1990b, Nagaya and Ishibashi 1991), the presence in the
initial state of both positively and negatively polarized latent nuclei was assumed, and a
periodic boundary condition was used, implying an infinite system. In spite of the simplicity
of the lattice model, it reproduces many features of the polarization-reversal process. From
the temporal evolution of the spatial dipole distribution in the polarization-reversal process,
it is easy to see the motion of the domain walls under the switching field. The switching
time is found to depend upon the applied field approximately as a power law, with the power
index differing for different definitions of switching time. The polarization and switching
current responses to a bipolar pulse field clearly discriminate between the ‘1’ and ‘0’ states.
The dielectric hysteresis loop, the field dependence of the differential electric susceptibility,
and the switching current have also been analysed.

Our approach to the switching problem is somewhat different. It has always been
suspected that a thin passive layer (sometime it is called a non-ferroelectric layer, or dead
layer) is formed between the ferroelectric and the electrode (Bell and Knight 1994, Tagantsev
et al 1995). The thickness of this layer is supposed to be independent of the total film
thickness. In one report (Benedettoet al 1994) this layer was estimated to be of the order
of 10 nm for PZT film. In another report (Mukhopadhyay and Chen 1995) it was found
that only a fraction of the first monolayer is non-ferroelectric. A method from a ‘model-
free’ analysis has been proposed to identify this passive layer from measured switching
parameters (Tagantsevet al 1995). A ‘ferroelectric–dielectric’ sandwich structure (Miller
et al 1990, Miharaet al 1992, Brennan 1992) has also been used to model the switching
behaviour in ferroelectric film with passive layers. In these works, the key point is to assume
a particular form for the hysteresis loop describing the dependence of the polarization on
the electric field.

The main purpose of this paper is to investigate the polarization reversal process
qualitatively using a finite-lattice model in which non-ferroelectric boundary sites are taken
to represent the passive layers. We believe that the lattice model has a more physical basis
than both the KA theory and the modelling from an assumed hysteresis loop. In the next
section, we obtain the relevant expressions from the free energy, present different definitions
of switching time, and briefly describe several empirical formulae relating to the switching
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time. The results, which include switching time for different numbers of sites and different
electric field strengths, are given in section 3 and discussed. The last section presents some
conclusions.

Figure 1. The time dependence of (a) the polarization
and (b) the current response in a lattice with total site
numberN = 10 to an electric field 1.1ec applied at
t = 0. The dashed lines show the response of the
central site.

Figure 2. The time dependence of (a) the polarization
and (b) the current response in a lattice with total site
numberN = 100 to an electric field 1.1ec applied at
t = 0. The dashed lines show the response of the central
site.

2. Free energy and expressions

The free energy of a one-dimensional lattice model with non-ferroelectric boundary sites is
written as

F = 1

4
(1 + p2

1)
2 − ep1 + 1

4
(1 + p2

N)2 − epN

+
N−1∑
n=2

[
1

4
(1 − p2

n)
2 − epn

]
+ κ

2

N∑
n=2

(pn − pn−1)
2 (3)

of the same form as equation (1), except that we assume that the basic non-ferroelectric
nature of the boundary sites (n = 1 andn = N) can be modelled by replacing the term
(1 − p2

n)
2 by (1 + p2

n)
2. The basis of this assumption is the fact that the conventional

Landau free energies in the ferroelectric and paraelectric phases differ only in the sign
of the term that is quadratic in the polarization, so we can qualitatively model the non-
ferroelectric surface sites by changing the sign of the term inp2

n. The surface sites are still
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coupled to the adjacent ferroelectric sites through the term inκ. Note that a ‘site’ in this
context refers to a layer of thickness equivalent to the thickness of the passive surface layer,
and so a film ofN sites is of actual thicknessN times the thickness of the surface layer.

The static properties can be obtained by minimizing the free energy (3). For the first
site n = 1 we have

(1 + p2
1)p1 − e + κ(p1 − p2) = 0 (4)

and a similar equation for then = N site. For the normal ferroelectric sites 26 n 6 N −1,
we have

−(1 − p2
n)pn − e + κ(2pn − pn−1 − pn+1) = 0. (5)

Neglecting surface effects, the bulk polarizationp satisfies the relation

(p2 − 1)p = e

and the bulk coercive field (the field required for polarization reversal) has magnitude
ec = 2/3

√
3.

From (4) and (5) we can obtain the equilibrium polarization profile under electric field
e and related properties such as susceptibility. The equations describing the relaxation
behaviour can be obtained by combining equations (2) and (3), which yields

γ
dp1

dt
= e − (1 + p2

1)p1 − κ(p1 − p2) (6)

for then = 1 boundary site and a similar expression for then = N site. For the ferroelectric
sites, 26 n 6 N − 1, we have

γ
dpn

dt
= e + (1 − p2

n)pn − κ(2pn − pn−1 − pn+1). (7)

The above two equations are the basic expressions for simulating the switching process.
The switching current (sometime called the polarization current or displacement current) is

i = dp

dt
. (8)

There are several definitions of switching time in the literature. At the early stage of
studying domain wall motion in barium titanate single crystals, it was defined as the timets
at which the current reaches zero. Other definitions used in the recent study of polarization
reversal process are listed below.

(1) t0 is the time at which the polarization crosses zero (Nagaya and Ishibashi 1991).
(2) t90 is the time when 90% of charge has been switched (Ishibashi 1992).
(3) tm is the time at which the current reaches its maximum (Ishibashi 1992, Tura and

Mitoseriu 1994).
(4) t50 is the time when half of the full polarization is attained (Ishibashi 1990a, b).

These four definitions are very practical. It is much easier to gett0 from the numerical
calculation, and it is not difficulty to measuretm from experiment (Tura and Mitoseriu 1994).
We will use these two definitions of switching time in the following calculations. However,
we will not calculatets in this paper, since strictly speaking the current only reaches zero
at infinite time.

Several empirical expressions have been obtained in the study of domain wall motion
in bulk barium titanate single crystals. For example, Merz (1954) found that the reciprocal
switching time has a linear dependence on the applied electric field:

ts ∼= βd

E − E0
(9)
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Figure 3. The dependence of the switching timetm (solid lines) andt0 (dashed lines) on the
number of sitesN under the electric fields (a)ec and (b) 1.5ec.

whered is the thickness of the sample,E0 is a kind of coercive field, andβ is a constant.
However, Miller and Weinreich (1960) found a power relation:

ts = Beb/E (10)

whereB andb are constants, and Stadler (1958) found an exponential law

ts = AE−n (11)

whereA andn are constant. Fatuzzo (1962) combined the last two expressions together:

ts ∼ E−neα/E (12)

wheren andα are the constants. The first three formulae will be used to fit our calculations
of tm and t0.

3. Results and discussion

The differential equations (6) and (7) are solved by Runge–Kutta integration with the initial
polarization profile in zero applied field obtained from (4) and (5) by a Newton–Raphson
method. We setκ = 1.0 for convenience.

3.1. The step-field response

The time evolutions of the polarization and current following the application of an electric
field e = 1.1ec are shown in figures 1 and 2, with total site numberN = 10 and 100
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respectively. The solid lines refer to the surface sites, and the dashed lines to the central site.
The time-scale is in units of the arbitrary parameterγ . The polarization is dimensionless,
and the current is defined in equation (8).

Figure 4. The electric field strength dependence of the switching times (a)t0 and (b) tm for
a 100-site lattice fitted with empirical formula (9) (diamonds), equation (10) (plus signs) and
equation (11) (squares). The electric field is in units of the bulk coercive fieldec.

From figure 1(a) we can see that the surface polarization is reversed earlier than that
of the central site, and its magnitude is reduced. This is because the surface sites, which
are non-ferroelectric as isolated sites, have weak ferroelectricity induced by the adjacent
ferroelectricity sites. The weak surface ferroelectricity makes the surface sites easier to
switch than the other sites. This leads to domain wall formation near the surface, followed
by domain wall movement towards the centre. Hence there is delayed switching at the
central sites. This kind of delay is much more obvious in figure 2(a), which is for a system
with 100 sites. It obviously takes a longer time for a domain wall to move from the boundary
to the central site in a long chain than in a short chain.

3.2. Switching time

As switching time is an important parameter describing the switching property, in this
subsection we calculate the switching timest0 and tm, as defined in the last section.

Figure 3 shows the dependence of switching times on the number of sitesN in the
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film. Figure 3(a) shows, for under an electric field ofe = ec, the bulk coercive field, and
figure 3(b) shows the switching under an electric field 1.5ec. Both switching times decrease
asN decreases, and reach a saturated value at a number of sitesNs which decreases with
increasing field. The value oftm is around three times higher than that oft0. This can be
easily understood by reference to figures 1 and 2, where it is clear that the timetm at which
the current reaches its peak value is later than the timet0 at which the polarization crosses
zero. We do not find a maximum in the current (other than att = 0) if the total number
of sitesN is less than four, though we can still find the switching timet0 at N = 3 even
though it is much reduced.t0 in effect becomes zero whenN = 2, because the sites are
non-ferroelectric.

Figure 5. The polarization profile evolution for a 100-site lattice under the electric fields of
(a) 1.1ec, (b) 0.8ec and (c) 0.6ec.

The electric field strength dependence of the switching times is shown in figure 4(a) for
t0 and in figure 4(b) fortm, both of which were fitted with the empirical formulae (9)–(11)
using a least-squares method. The electric field is scaled by the bulk coercive fieldec. In
both figures the switching times decrease as the field strength increases. By looking at the
mean standard deviation obtained from the fitting, we find thattm can be fitted with the
empirical formulae a little better than cant0, that bothtm and t0 fit better for strong fields
than for weak fields, and that equation (10) gives marginally the best fit. Another feature
apparent in both figures is that the switching times are not infinite whene is equal to the
bulk coercive fieldec, which implies that the polarization can be reversed by an electric
field weaker thanec. This indicates that the coercive field is weaker in films than in the
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Figure 6. The polarization (P ) and current (i) evolution under a pulsed electric field (E);
e = 1.4ec; total site numberN = 50. (b) shows an enlargement of (a) for the first two pulses,
showing the ‘1’ and ‘0’ responses. The magnitude of the back-switching polarization is indicated
by the arrow.

bulk, in agreement with the latest analysis from a model-free calculation (Tagantsevet al
1995).

3.3. Profile evolution

Figure 5 shows the time evolution of the polarization profile under three different electric
field strengths. The most striking feature is in figure 5(b). Immediately after the electric
field is applied, the polarization at all sites increases, but the shape of the polarization profile
does not change much apart from a small increase in magnitude. Thereafter, the polarization
of the surface sites reverses, and domain walls are formed near the surfaces. These walls
move inward until they coalesce and the reversal process finishes. When the applied field
is stronger, as shown in figure 5(a), the above statements are still true but the domain wall
movement is less obvious. The polarization at all sites increases while the domain walls
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move inwards. Figure 5(c) shows the polarization profiles when a non-switching field is
applied: the polarization reaches a saturated but non-switched value soon after the field is
applied.

3.4. The pulsed-field response

In most devices, the polarization is reversed by a pulsed electric field. Figure 6(a) shows
the time evolution of the polarization and the current under a bipolar pulse sequence. The
polarization, initially negative, is reversed by the first positive pulse (pulse 1), then re-probed
by a second positive pulse (pulse 2); the situation is then reversed by the negative pulses
(3 and 4). Figure 6(b) shows an enlarged view of the first two pulses in figure 6(a). Two
features are worth pointing out. First the figure shows clearly the difference in response
when polarization reversal occurs (switching pulses 1 and 3) and when no reversal occurs
(non-switching pulses 2 and 4). In the literature, the former is referred to as the ‘1’ response,
and the latter as the ‘0’ response. The second feature is the back-switching phenomenon,
defined as the decay of polarization after the removal of the applied field. The magnitude
of the back-switching polarization change is indicated by the arrow in figure 6(b). There is
also a large back-switching current associated with this polarization change. In some of the
literature (Benedettoet al 1994, Miharaet al 1994, 1995) the back-switching phenomenon
is called the depolarization effect.

4. Conclusions

From the calculations we can see that the lattice model with non-ferroelectric boundary
sites predicts that the switching time decreases with the film thickness. The switching
time obtained from this model decreases with increasing electric field strength, and can be
fitted very well by the empirical formulae suggested in earlier work. The time evolution of
the polarization profile shows clearly the formation of domain walls and their movement
under the electric field. The back-switching phenomenon can be seen from the response of
polarization and current under a pulse sequence. This model clearly can be used to simulate
the behaviour of real ferroelectric thin-film structures. Our model gives a behaviour similar
to that predicted in other work (e.g. Omuraet al 1991), but without introducing latent nuclei
that initiate the imperfections.
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